Секция «Математика и механика»

On the strong law of large numbers for some stochastic processes Паламарчук Екатерина Сергеевна

Соискатель

Центральный экономико-математический институт РАН, Лаборатория Теории риска, Москва, Россия E-mail: e.palamarchuck@qmail.com

We present generalizations of some results obtained in [1] concerning the strong law of large numbers (SLLN) for stochastic processes. The basic definition of the SLLN can be found in [2].

Definition [2]. Assume that $\{Y_t\}_{t=0}^{\infty}$ and $\{L_t\}_{t=0}^{\infty}$ with $L_0 = 0$ are a semimartingale and a predictable increasing process defined on a stochastic basis $\{\Omega, \mathcal{F}, \mathbf{F} = (F_t)_{t\geq 0}, \mathbf{P}\}$. We say that the pair (Y_t, L_t) satisfies the *SLLN* if $P(\lim_{t\to\infty} \{Y_t/L_t\} = 0) = 1$.

Our main purpose is to establish the SLLN when Y_t is a function of an *n*-dimensional random process $\{X_t\}_{t=0}^{\infty}$ given by

$$dX_t = A_t X_t \, dt + G_t \, dw_t \,, \quad X_0 = x \,, \tag{1}$$

where $A_t \in \mathbb{R}^{n \times n}$, $G_t \in \mathbb{R}^{n \times d}$ are bounded non-random matrix functions, $\{w_t\}_{t=0}^{\infty}$ is a *d*-dimensional standard Wiener process and x is a non-random vector. We make the following assumption.

Assumption \mathcal{A} . There exist positive constants κ_1, κ_2 such that $\|\Phi(t, s)\| \leq \kappa_1 e^{-\kappa_2(t-s)}$, for all $s \leq t$, where $\Phi(t, s)$ is the fundamental matrix corresponding to A_t , $\|\cdot\|$ denotes the Euclidean matrix norm.

The main result is the following theorem.

Theorem. Let $L_t = \int_0^t ||G_s||^2 ds$, $Y_t = ||X_t||^2$, where X_t is a solution of (1). Assuming \mathcal{A} , the pair (Y_t, L_t) satisfies the *SLLN*.

We also prove some auxiliary statements imposing conditions on L_t in order to ensure that the *SLLN* holds for the pair (Y_t, L_t) , when Y_t could be the Ito or Riemann-type integral of a rather general stochastic process. The methods used in the proofs are similar to those applied in [3].

The research was partially supported by RFBR grant no. 10-01-00767.

Литература

- Palamarchuk E.S. On the strong law of large numbers for solutions of a linear stochastic differential equation (in Russian) // International Conference International conference "Probability Theory and its Applications" in Commemoration of the Centennial of B.V. Gnedenko. Moscow, June 26-30, 2012. Moscow: LENAND, 2012, p. 57–58.
- Liptser R.Sh., Shiryayev A.N. Theory of Martingales. Dordrecht: Kluwer Academic Publishers. 1989.
- Kramer H., Leadbetter M.R. Stationary and related stochastic processes. New York: John Wiley. 1967.